

What are saproxylic invertebrates?

- sapros = decayed; xylon = wood (in Greek).
- "species dependent upon dead or decaying wood at some stage of their lifecycle, or upon woodinhabiting fungi or other saproxylics"
- Also includes bark-associated species.
- Around 2,000 invertebrate species in the UK are dependent upon dead or decaying wood in one form or another.
- This includes some of our rarest and most threatened invertebrates.

What are saproxylic invertebrates?

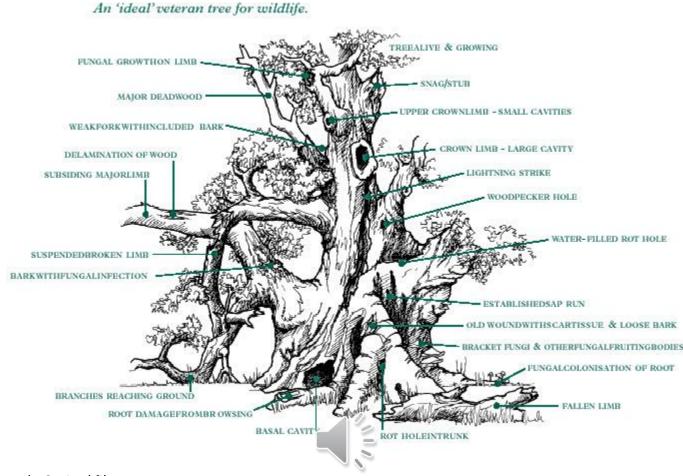
- This means over 2000 different life styles, with each species having precise requirements.
- This includes: detritivores, fungivores, predators, scavengers, parasitoids, and various types of symbiosis.
- Beetles (~700 species) and flies (~750 species) support the greatest no. of saproxylic species in the UK.
- But also an assortment of other insects (such as moths, bugs, thrips, bees, wasps and ants) and non-insects (such as spiders, mites, pseudoscorpions and nematodes) inhabit dead and decaying wood.

A large number of invertebrates (and vertebrates) live in dead and decaying trees but do not use them for their nourishment.

naturebftb.co.uk @naturebftb

Stag Beetle's © Steven Falk

Myolepta © Will George


- The living tree is most important, for it is the living tissues that generate the wood which will ultimately decay.
- Important features of a living tree include:
- → **Heart rot** (brown- and white-rot decay).
- → Wood mould (i.e. mixture of decaying wood, litter and fungal hyphae) at base of hollow trunks/stumps.
- → **Dead attached limbs** (e.g. stag-horned trees).
- → Cavities of assorted sizes.
- → Rot-holes (water-filled or dry).
- → Sap runs and slime fluxes.
- → Aging (thickened/old), flaking or loose bark.
- → Associated fungi (e.g. bracket fungi).
 Decaying underground roots.
 Woodpecker holes.

An 'ideal' veteran tree for wildlife – In: Read, H. 2000. Veteran Trees: A Guide to Good Management. English Nature, Peterborough.

Heartwood decay

- The single most important wood-decay resource for invertebrates is a large standing living tree with columns of decay in the heartwood (or ripewood).
- Most saproxylic invertebrates rely on fungi and/or micro-organisms to break-down the components of wood into more digestible materials, or feed on these directly/indirectly.
- Heartwood-rotting fungi are keystone species a large number of other species are completely dependent on the conditions which they create.
- White-rotted heartwood and brown-rotted heartwood (also known as red rot) support quite different faunas.

© Andrew Skinner

Cosnard's Net-winged Beetle (*Erotides cosnardi*)

- Endangered (RDB1) and globally rare species.
- Only two known populations in Britain Wye Valley and West Sussex Downs.
- Larvae develop in cavities within white-rotten heartwood of ancient beech *Fagus* trees.

naturebftb.co.uk @naturebftb © Lech Borowiec

Oak Click Beetle (*Lacon querceus*)

- Endangered (RDB1) species.
- Known only from Windsor Forest in Britain.
- Develops exclusively in red-rotten Oak Quercus trunks and main boughs.
- Its larvae prey on the larvae of the Hairy Fungus Beetle (*Mycetophagus piceus*), which feeds directly on the mycelium of the Chicken-of-thewoods Fungus (*Laetiporus sulphurous*) deep inside the decaying trunk.

Wood mould

- Both white rot and brown rot ultimately decay and compost into soil-like wood mould. This is the end product of trunk and bough hollowing by fungi.
- This accumulates in the bottom of the cavities hollowed out within the tree and is the rarest of the wood decay habitats.
- Trees must be sufficiently old to develop enough dead wood, and sufficient time passed for the fungi to decay this wood and the products to be composted.
- Wood mould supports some of Britain's rarest insects that develop in this medium of relatively constant temperature and humidity.

Royal Splinter Cranefly (Gnophomyia elsneri)

Steven Falk

Only known globally from Windsor Forest and a site in Slovakia. Develops in porridgelike wet wood mould in hollow beech or beech stumps.

Violet Click Beetle (*Limoniscus* violaceus)

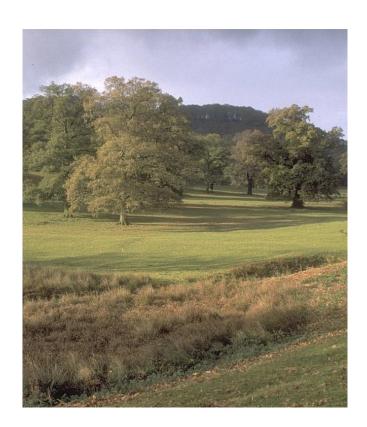
- Endangered (RDB1) species.
- It is only known from Windsor Forest and two areas of the north Cotswold wood-pastures.
- Believed to be one of the final specialist wooddecay invertebrate species to colonise a tree.
- It's larvae develop in wood and leaf mould in base of hollow Beech Fagus and Ash Fraxinus trees where they are predatory on other invertebrates.

Rot holes

- Smaller cavities in the trunk and in the branches in which debris and rainwater accumulates and composts. As they are often open to the elements, they **offer different conditions** to those found in the centre of the main trunk.
- Often develop as a consequence of branch damage providing access for heart-rot fungi and become enlarged through the combined action of heart-rot fungi, invertebrates and physical break-down of the decaying wood.
- Particularly favoured for their moister conditions by flies such as hoverflies (Syrphidae), moth flies (Psychodidae), wood gnats (Mycetobiidae), longlegged flies (Dolichopodidae), and others. These will have varied life styles.

Why conserve saproxylic invertebrates?

- They are among the most threatened invertebrates in Europe!
- Some species are so specific in their habitat requirements and so dependent on centuries of continuity of such trees in the same locality, that they can be used as good indicators of habitat quality and continuity.
- By breaking down dead wood, they help to freeup nutrients and minerals locked up in the wood, once-again making them available to the tree.



What do saproxylic invertebrates need?

- Require a diverse age structure of living woody
 plants in order to ensure continuity of wooddecay habitats (most critical factor for long-term
 persistence of saproxylic invertebrates).
- Need sufficient no. of trees to maintain viable invertebrate populations.
- Many require open-grown trees, however some favour the more humid conditions found in dense areas of trees.
- Connectivity is important saproxylic invertebrates are often poor dispersers (have evolved with a stable habitat that doesn't move).

What do saproxylic invertebrates need?

- Many saproxylic insects need nectar and pollen as adults so access to blossom is important – nectar provides an energy-rich food, while pollen provides protein-rich food which aids egg production.
- Flowering trees and shrubs are by far the most important sources, although other plants can also be very popular.
- e.g. Hawthorn, Sallow, Holly, Privet, Rowan, Crab apple, Wild pear, Guelder rose, Bramble, Hogweed and Angelica.

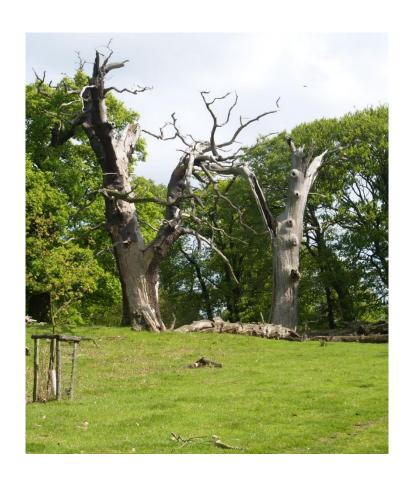
© Steven Falk

Tree management for saproxylic invertebrates

- Require a diverse age structure of living woody plants in order to ensure <u>continuity of wood-</u> <u>decay habitats</u> (most critical factor for long-term persistence of saproxylic invertebrates).
- Need sufficient no. of trees to maintain viable invertebrate populations.
- Many require open-grown trees, however some favour the more humid conditions found in dense areas of trees.
- Connectivity is important saproxylic invertebrates are often poor dispersers (have evolved with a stable habitat that doesn't move).

Ensure a supply of both young and mature trees to provide future veterans. Retain trees showing decay features and do nothing to damage those features.

Maintain as many veteran trees as possible, allowing these to age and die naturally, but continue any longestablished pollarding.


Encourage open grown trees, which develop larger butts and trunks and have more heart wood decay at an earlier age than woodland trees.

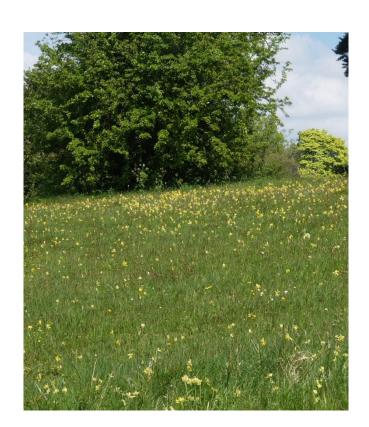
Reduce site fragmentation by promoting future veterans on land in between existing site. This can be via tree planting or encouraging natural regeneration.

Tree management for saproxylic invertebrates

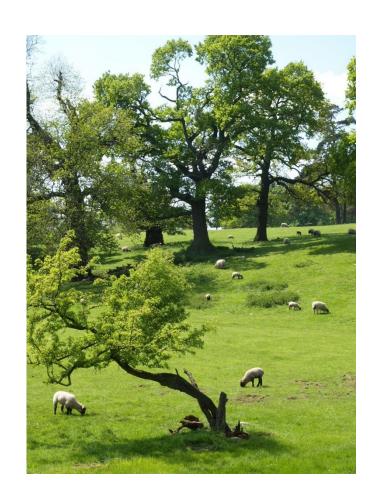
- Keep as much dead wood on site as possible (preferably all of it). Ensure that dead wood is allowed to lie / stand in a variety of conditions, ranging from very humid and shaded, to partially shaded or fully exposed to sunshine.
- Do not carry out management work on all the trees at the same time.
- Retain the same tree species composition on the site when planting younger trees and encouraging the regeneration.
- NB. Avoid removing veteran, exotic trees as they can sometimes support the same valuable microhabitats and associated invertebrates as native, veteran trees.

Veteranisation

- Where an age gap exists between ancient trees and those that will be future ancient trees, veteranisation may be needed.
- A technique whereby younger trees are intentionally 'damaged', subsequently exposing them to bacteria and fungi that speed-up the decay process.
- It should NEVER be carried out on ancient or other veteran trees, and should be seen as a last resort.
- Pollarding trees of intermediate age can also be used to close up the generation gap.


© Ancient Tree Forum

Surrounding land management


- Trees do not exist in isolation; the environment around them can be crucial to their welfare.
- The 'improvement' of grassland through reseeding or the application of fertilisers, herbicides etc. can be detrimental.
- Inorganic fertilisers disrupt mycorrhizal fungi, making trees more susceptible to stress.
- Ploughing damages the roots of the trees and mycorrhizal fungi.
- No inorganic fertilisers should be applied, and no ploughing or reseeding carried out.

Surrounding land management

- Maintain any traditional grazing regimes, but avoid excessive stocking.
- Ensure that there are adequate nectar sources in open sunny conditions (e.g. by relaxing grazing or not cutting between April and Sept, retaining/planting blocks of flowering trees/scrub).
- Don't provide supplementary feeding for livestock, except where vital for livestock health (dung enriches the soil) and avoid using avermectins in livestock (other types of wormers may be just as detrimental).
- Use rotational management to generate a diversity of structures / sward heights.

Summary

- Saproxylic invertebrates are among our rarest and most threatened species.
- Saproxylic invertebrates require good populations of ancient or veteran trees.
- Management should ideally aim for a large number of trees, in close proximity, with a good range of different ages (including future veterans).
- The continuity of **dead wood resource** (both standing and fallen) and **dead wood features** (e.g. decay cavities, rot pools, sap runs) is important.

© Neil Aldridge

